Resuelto el problema de los conjuntos generalizados de Sidon

Hace pocos días apareció en los medios de comunicación la noticia de que un grupo de matemáticos de la Universidad Autónoma de Madrid habían resuelto un problema de “teoría de números” que se planteo hace casi 80 años, el problema de los conjuntos de Sidon. Se da la circunstancia de que uno de los miembros del equipo que lo ha resuelto, Javier Cilleruelo, es vecino de Colmenar Viejo.

Aquí os dejo una pequeña explicación del problema.

Los conjuntos de Sidon son conjuntos de enteros positivos con la propiedad de que todas las sumas de dos elementos del conjunto son distintas.

Por ejemplo, {1, 2, 5, 10, 16, 23, 33, 35} es un conjunto de Sidon mientras que  {1, 3, 7, 10, 17, 23, 28, 35} no lo es porque aparecen sumas repetidas: 1+23=7+17.

¿Cuál es el mayor tamaño que puede tener un conjunto de Sidon en {1, . . , n}? ¿Y si permitimos que cada suma pueda aparecer hasta g veces? (conjuntos g-Sidon)

Este fue el problema planteado en 1932 por Simon Sidon, un analista húngaro, a Paul Erdos. Aunque el interés de Sidon por estos conjuntos tenía que ver con cuestiones del análisis, el problema cautivó a un joven Erdös por su vertiente aritmética y combinatoria, y se convertiría en un tema recurrente en su investigación. Erdös fue uno de los grandes matemáticos del siglo XX y el más prolífico de todos los tiempos, solo superado por Euler.

Mientras el problema para el caso g=1, donde todas las sumas son distintas, no tardó mucho en resolverse por el propio Erdös, determinar el tamaño de estos conjuntos para valores mayores de g, ha sido un misterio desde entonces y ha atraído la atención de muchos matemáticos, entre otros de Paul Erdos y de Ben Green. Este último es mundialmente conocido por haber demostrado, junto al medalla Fields, Terence Tao, que la sucesión de los primos contiene progresiones aritméticas arbitrariamente largas.

Javier Cilleruelo, Carlos Vinuesa e Imre Ruzsa han resuelto finalmente este problema en el artículo “Generalized Sidon Sets” (Advances of Mathematics, vol 225, nº5  (2010)), utilizando nuevas herramientas probabilísticas, algebraicas y combinatorias. El resultado ha sido inesperado porque se pensaba que los conjuntos g-Sidon en {1,…, n} no podían ser tan grandes como finalmente se ha demostrado.

Los matemáticos que han llegado al resultado son:

Javier Cilleruelo                             Imre Ruzsa                                 Carlos Vinuesa

Javier Cilleruelo es miembro del Departamento de Matemáticas y del Instituto de Ciencias Matemáticas y es el responsable del grupo de teoría combinatoria de números.

Carlos Vinuesa, estudiante de Javier, está en la actualidad realizando una estancia posdoctoral en Cambridge con el profesor Ben Green.

Imre Ruzsa es miembro de la prestigiosa Academia de Ciencias de Hungría y uno de los mayores expertos en teoría combinatoria de números.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *